Category Archives: Articles

Gaining muscle mass: A lean bulk or a dirty bulk?

By Fleur van Griensven

Spring has just begun and some have probably already started cutting. The winter is the perfect moment for gaining muscle mass, right? Temperatures below zero, Christmas and New Year with a lot of delicious food. Also way too cold to wear tank tops, so you can hide the gains or a little winter fluff with comfortable sweaters. This is also the reason why most people tend to use this season for bulking and start a cut before summer to see what they have built up. What should you do once you have decided that it is time to improve your physique and start a bulking period: a lean bulk or a dirty bulk (one in which you eat as much as you can)? Which one is more optimal for gaining muscle mass whilst keeping fat gain to a minimum? Read the answer here.

Introduction

To optimally gain muscle mass you need to be in a caloric surplus, hence eat more calories than you burn. This means that to optimize muscle growth you need to be in a weekly caloric surplus. Those extra calories can then be used for protein synthesis and recovery. If you also apply progressive overload in the gym, you will give your body a stimulus to adapt to and grow stronger and bigger (=supercompensation). Progressive overload can be accomplished in many ways: lifting more weight, doing more reps/sets, training more frequent so you can get in more volume per muscle group etcetera. When your skeletal muscles grow bigger and stronger upon a training stimulus, you need to continue making greater demands, so they can make further adaptations. I will not go into detail about what you should do with your training during a bulk, but I briefly wanted to get you familiar with the concept of progressive overload if you have not heard of it already. I will come back to it later when I discuss the downsides of implementing a dirty bulk.

Lean bulking

If you choose to go for a lean bulk, you are going to be in a small caloric surplus every day (+/- 200-300 calories above maintenance). You will probably keep yourself accountable that things do not get out of hand: you will weigh yourself, take pictures and make sure that you can see the progress being made. A lean bulk does not give you permission to go all-out and eat as much as you can, since the main purpose of a well-executed lean bulk is like the name implies: staying relatively lean whilst putting on muscle mass. Therefore, slow and steady wins the race when we talk about a lean bulk. Next to that, there is the misconception that lean might imply that you can only eat ‘healthy’ foods. Healthy is a concept which in my opinion is made very black and white. Sure, some foods are considered more nutrient-dense and thus contain more vitamins, minerals, complex carbohydrates and healthy fats than others. Where it goes wrong is by claiming that certain foods are bad or good, but you should always look at the diet as a whole. If you do care about your health, get in enough nutrient dense foods, then do not say that your diet is unhealthy simply because you have eaten one meal which does not contribute as much to your health. Look at the big picture: the diet as a whole.

How long you can lean bulk depends on a few factors:

  • the level of leanness you start with. No need to make this one more complicated: the leaner you are the longer you can lean bulk for (provided of course you eat at a small surplus and monitor your weight so that you gain weight slowly). Being lean enough to start with provides you with more time which you can spend lean bulking.
  • your daily/weekly caloric surplus. If you keep the caloric surplus small, most of this excess of calories will contribute to building muscle mass and you will be able to lean bulk for longer since you will stay in a relatively lean shape. You will inevitably gain fat, because even in a small caloric surplus you are eating more calories than your body needs to maintain its current weight (=maintenance calories). You are basically still overfeeding your body, but doing it in a controlled way so that the fat gain will be minimal.

 

Dirty bulk

If you choose to go for a dirty bulk, you are going to be in a big caloric surplus every day. The term dirty bulk might also be a bit confusing. What is not meant with it is that you eat junk food all day long. Sure there are people who do this and it is possible in a dirty bulk, but dirty refers to the big caloric surplus that you are in. Dirty or unhealthy foods are often energy dense and thus contain more calories per gram. This makes it easier to end up in a big caloric surplus at the end of every day.

During a dirty bulk you create a big caloric surplus (500 calories or more above maintenance). This is an easy way to gain weight, because if you eat more and more the number on the scale will also go up rapidly. I am not implying that all this weight gain will be muscle and you will see your body fat percentage probably rise quickly too. The downside is that a long cut is waiting for you to bring your bodyfat percentage back to a point from where you can start another period of gaining muscle mass if wanted.

A common mistake is that the bigger the caloric surplus or the more you eat the more muscle mass you will gain. Seems like the perfect world, right? Eat as much as possible, get stronger and it will all be used for building muscle. In the beginning you will probably stimulate muscle growth quicker because you are 100% sure that you are eating enough to end up in a caloric surplus at the end of the week. What if you got fat after 2/3 months and need to cut already? On the long term you will lose this advantage, because you will be able to bulk for only a short period.

Another downside of a dirty bulk is that nutrient partitioning gets worse with a higher body fat percentage. For this one I have to explain something else first, namely the P-ratio, which scientists use when talking about the partitioning of calories. It represents the amount of protein gained/lost during over- or underfeeding. A high P-ratio during overfeeding means that you gained a lot of protein and very little fat, just what you ideally want if your goal is to gain as much muscle mass as possible. The P-ratio is mostly genetically determined for every individual and we can maybe control 15-20% by some other factors that control the P-ratio. The primary other predictor of the P-ratio during overfeeding is your body fat percentage. There are some implications that fatter individuals gain more fat and less muscle when overfeeding, thus the P-ratio tends to get less favorable in terms of building muscle compared to gaining fat[1]. However keep in mind that body fat percentage only plays a very small role in controlling P-ratio and it is mostly genetically determined.

Then there also is the question which comes up next: How quickly can you gain muscle mass if you are a natural and do not use anabolic steroids?

There are different opinions about the rate of muscle gain per year depending on the years of training or on your level of training (beginner, intermediate, advanced). Keep in mind that these data I am going to present in a bit apply to male lifters, since data on females are much harder to find. Most research indicates that women can gain the same percentage of muscle mass compared to men during strength training [2+3]. This still is a bit of a controversial topic and the research is ongoing. More often or not women have a different body composition to start with, so less muscle mass and more fat mass compared to men. I have addressed this topic in the article ‘Do women naturally have less muscle building potential than men?’. If you want to know more about it, check out this link

Lyle McDonald came up with a model that considers the years of proper training. In the first year of training the potential to build muscle mass is the highest and it decreases with the years. You have to take into account that this is an average which you can expect with proper training. There are other factors such as age which interfere with it. Older individuals may gain more slowly than younger ones

Table 1: Lyle McDonald model for rate of muscle gain [4].

Years of Proper Training Potential Rate of Muscle Gain per Year
1 20-25 pounds (2 pounds per month)
2 10-12 pounds (1 pound per month)
3 5-6 pounds (0.5 pound per month)
4+ 2-3 pounds (not worth calculating)

 

Alan Aragon came up with a model in which he considers the level of training (beginner, intermediate and advanced). The results end up being pretty similar to the ones from Lyle McDonald presented above.

Table 2: Alan Aragon model for rate of muscle gain [4].

Category Rate of Muscle Gain
Beginner 1-1.5% total body weight per month
Intermediate 0.5-1% total body weight per month
Advanced 0.25-0.5% total body weight per month

 

Concluding here: gaining muscle mass takes time, you can not force-feed muscle gains and the potential rate of muscle gain decreases with the years. Beginners can probably get away with a dirty bulk, since they can gain 9-11 kilograms in their first year of training [3]. The closer you get to your genetic potential the less muscle mass you will be able to build and it is not smart to do a dirty bulk, since the potential for muscle growth is low and you will gain a significant amount of body fat.

Conclusion

There are different ways to set up your own bulk. The dirty bulk is on the long term less effective, because your body fat percentage will go up quick in comparison to the amount of muscle mass you will be able to build. Also, you will not be able to bulk long and thus limit the amount of time spend in a caloric surplus building muscle. Next to that, if you carry a higher body fat percentage nutrient partitioning probably gets worse. There are implications that fatter individuals gain more fat and less muscle when overfeeding, even though for the biggest part the P-ratio is genetically determined for every individual.

An optimal bulk is one in which most of the gained body weight is muscle mass and one in which you keep fat gain to a minimum. For most individuals this will be a lean bulk in which you eat a controlled small caloric surplus to stay in a relatively lean shape whilst putting on muscle mass and improving your physique.

Don’t end up spinning your wheels between short bulk and cycles. Get progressively stronger, enjoy more food and more flexibility during a lean bulk and you will be happily living the bulk life for a long time!

My own experience

I myself have done both a dirty bulk and just finished a very long lean bulk (13 months). I learned my lesson during the first time that I decided to do a bulk. I just started training and lacked the knowledge that I do have today. I started eating as much as I could. In the beginning it all went fine: the weight on the scale went up, i gained strength like crazy and I saw some improvements in my physique. However, it did not take long before I started to lose the motivation to hit the gym, because I saw myself getting fatter and I did not feel 100% comfortable looking at myself in the mirror or wearing gym clothes. After bulking for around 4 months I gained a total of 10 kilograms. Safe to say I just got fat. It was a real eye-opener when a friend of mine told me straight in my face that I have let this bulk gone way too far. I did not want to believe it myself up until that point, but I knew this was not the way (at least for me) to gain muscle mass. I gained a lot of  body fat and little to no muscle mass. I started cutting at 72 kilograms and got back to 60 kilograms only to conclude that I was at the same point where is started bulking earlier. Not to mention the cut was long and demotivating having to lose quite a significant amount of weight.

After I finished my cut at 60 kilograms in February 2017 I started a lean bulk. I had a proper plan and promised myself two things: I wanted to be in a caloric surplus for at least one year and gain a maximum of 10 kilograms whilst being happy with my shape at the end of the lean bulk. By now I am still happy with my shape even though I gained those 10 kilograms. I can see the progress that I have made and even though I am really curious to start a cut to see what I’ve built up, I also know that I have been able to keep the body fat gain during this lean bulk to a very minimum. This is how I will always set up a bulk for myself. I know a smallfat gain is inevitable and I do feel a little bit more ‘fluffy’ from time to time. I remember then that there is a huge difference between getting fat and gaining a little bit of fat whilst being in a caloric surplus for quite some time already. I prefer the last one because I would rather feel good in my own skin year-round whilst being able to put on muscle mass, than getting fat during the winter only to conclude next summer that I did not make any improvements.

 

References:

[1] McDonald, L (2008). Calorie Partitioning part 1. Retrieved from: https://bodyrecomposition.com/muscle-gain/calorie-partitioning-part-1.html/

[2] Roth, SM (2001). Muscle size responses to strength training in young and older men and women. Journal of the American Geriatrics Society, 49(11), 1428-33.

[3] Smith, I (2012). Similar muscle protein synthesis rates in young men and women: men aren’t from Mars and women aren’t from Venus. Journal of Applied Physiology, 112(11), 1803-1804.

[4] McDonald, L (2008). What’s my genetic muscular potential? Retrieved from: Https://Www.Bodyrecomposition.Com/Muscle-Gain/Whats-My-Genetic-Muscular-Potential.Html/

Advertisements

Common Posture Problems and how to fix them

by Patrick Flege

We live in very comfortable times – sitting in a nice, air-conditioned room all day, driving home, enjoying our favourite show on TV! Yet, this comfy lifestyle has a price – the once heroic posture of our forefathers (and foremothers) is gone, and we’re doomed to live our lives as nerdy hunchbacks! Well, not quite. As common as those posture problems are, there are effortless ways to correct it, and get a real power-posture!

Expansive postures are pretty cool things! They do a lot for your overall sense of control [1]. Changing your posture, i.e. sitting upright for example, has a range of additional benefits: in a 2015 study, published in Health Psychology, researchers exposed subjects sitting either in a slouched, or straight, upright position to speech and stress tests. The results were crystal clear: ”Adopting an upright seated posture in the face of stress can maintain self-esteem, reduce negative mood, and increase positive mood compared to a slumped posture. Furthermore, sitting upright increases rate of speech and reduces self-focus. Sitting upright may be a simple behavioral strategy to help build resilience to stress” (Nair et al., 2015). Interestingly, an exaggerated self-focus is at the root of many psychological diseases, such as depression, and high stress levels reduce your sex-drive! So, sitting upright could spice up your sex-life! In an interview with the BBC, physiotherapist Sammy Margo pointed out that standing up straight makes you more awake, improves digestion, and ups your circulation and general energy levels [2] Needless to say, an upright posture makes a much better impression during interviews for jobs, and makes you appear more confident, and thus more trustworthy! A good posture is also essential for your joints and muscles – it minimizes the amount of excess force that they need to absorb, according to Eric Robertson, spokesperson of the American Physical Therapy Association (https://www.livescience.com/54289-how-posture-affects-health.html).

For women especially, an upright posture eases pressure on the bladder and pelvic floor muscles – continuous pressure wears out the bladder and those muscles, which makes it more likely for you to accidently leak urine during laughter or coughing. A nice posture strengthens the pelvic floor muscles, and makes for more and better orgasms, says Margo [3]! if that is not motivation enough, I don’t know what is!

If posture has such an amazing effect on our wellbeing, why don’t we all stand up straight like Superman and Wonder Woman? Well, you probably already know the answer – once upon a time, our forefathers spent all day searching the Savannah for big game, then hunting it down and carrying it home. You see that in the way our body is shaped – compare, for example, the amount of muscle we have in our legs (and buttocks) compared to the rest of the body. For a primate standing upright to scout the savannah in search for prey and predator, and quickly running towards (or, in the latter case, better away from) those threats, it is quite useful to have strong legs. Compared to them, our upper body is actually pretty weak! You can run for 4 hours, but not do push-ups for that long – and why would you? By diverting the heavy job of movement to the legs, the upper body became free for low-intensity, precise object manipulation. Your legs make you hunt down that gazelle, your hands make you craft the spear you thrust into it. But to run well on your legs, you need to stand upright!

Our whole body is adapted for being in an active, upright position, shaped throughout millennia of evolution. Even after the dawn of agriculture, most work was done standing upright, or involved lots of walking (imagine soldiers marching through vast lands or messengers walking for days and weeks)! Even during the industrial revolution, most work was done standing!

Today, we live a very different lifestyle. Gone are the days where our grandparents laboured on the fields or the mines, today we sit, from 9 to 5, on our desks, study, check facebook in between, eat, study and work some more, drive home (okay, in The Netherlands we cycle, but you get the gist!), sit in front of the television and watch Game of Thrones.

From this lifestyle, some common posture problems emerge, because we’re basically still adapted for the high-intensity environment of the past – evolution is pretty slow catching up with the speed of change of our modern economy, so don’t count on your selfish genes suddenly re-arranging your whole physiology! We’re basically mismatched to our environment, and our genes think we’re still in the grasslands chasing gazelles.

According to the British National Health Service (NHS), [4] there are 8 common posture problems: the aforementioned slouching in a chair, your bottom sticking out, standing with a flat back, leaning on one leg, hunchback and ‘text neck’, poking your chin, rounded shoulders, and cradling your phone.

Each of these posture problems is quite common. Let’s go through them step by step.

Slouching:

It might not cause you immediate discomfort, but it can pressure soft tissues and muscles, and in the long run cause severe muscle pain. Get in the habit of sitting up straight. This might feel uncomfortable at first, given that you’re probably not used to a new position, and your muscles need to ‘train’ first to eventually support this position. Exercises which help with this problem are those that strengthen your core and your butt. Deep squats are perfect for this! Planking is also pretty great!

Sticking your bottom out, or “Donald Duck posture”

while we all think Mr Duck is funny, you shouldn’t walk like him. Your lower back has a pronounced inward curvature, and often this is caused by wearing high heels, excessive amounts of belly fat, or pregnancy. Imagine a string which lifts you up slightly- that is the proper posture. Here again, a strong butt and core are key for getting a better posture, so squat and plank a bit more often. Also, hip flexor and thigh stretches help!

Flat back:

your pelvis is tucked inwards, and your lower spine is straight instead of slightly curved. Often, your neck and head also lean forward. This stance makes it quite hard to stand for long, and the tilted neck and head cause muscle strain. Sitting long hours and muscle imbalances are frequently the cause. Once again, train your butt and core, but don’t stop here. Pull-ups, rowing, and exercises strengthening the rear shoulders(so the back part of your shoulders) help.

Leaning on one leg:

This posture might not look so bad, but places extensive pressure on one side of your lower back and hips, instead of core and buttocks. This posture, while it might be seductive especially if you stood for a long time already, might cause muscle imbalances and strain in the pelvis, and pain in your lower back and butt. Anything that causes uneven pressure (like holding your backpack on just one shoulder) can contribute to these imbalances. Try to stand on both of your legs evenly, and train your butt, your core, and do some planks!

The hunchback:

pretty common nowadays, and here, our mobile devices and “hunching” over our computer keyboard carry a lot of the blame. It is quite tempting to sit in this (slightly Gollum-like) posture during work, but don’t! Often, this posture deficiency is due to a weak upper back and a tight chest. Strengthen your upper back, your rear shoulders and your neck, extend and stretch your chest, and pay attention on how you sit!

A poking chin:

this can be caused by a lot of things, but probably it comes from you sitting too low, or your computer-screen standing too high. A hunchback might carry part of the blame as well. To handle this, first adjust your seating, so that your screen is in front of you and not above your eyeline, so you don’t have to poke up your chin. Tuck your chin down, so that the back of your head is lengthened upwards. Pull your shoulder blades together while sitting, towards your spine, and pull in your tummy so that your spine regains its natural curvature.

Rounded shoulders:

If your knuckles face forward once you let your arms hang sloppily on your side, chances are you got rounded shoulders. Those are often caused by a weak upper back and a tight chest – frequently also from muscle imbalances, if you get super enthusiastic about benching twice your bodyweight, but never even think of pull ups or rowing, it’s time to re-do your workout schedule. A weak upper back compared to your chest might be involved! Strengthen your core with planks and bridges, train your upper back, and stretch your chest!

Cradling the phone:

common in modern offices and desk jobs, we tend to cramp our phone between our ear and shoulder. This however places undue pressure on muscles and causes muscular imbalances. Here, the start of the cure is to avoid doing it. Hold your phone with your hand! It is quite easy to fix, just stretch your chest, and do some exercises which stretch and rotate the neck.

The common core disciplines of powerlifting (deadlift, squats, and bench-press) are quite neat for implementing these tips, as executing them properly demands that your back is straight and tight, and they work a substantial number of your muscles.

Perhaps the greatest benefit from consciously working on and improving your posture is non-medical: fixing your posture every time you think of it improves your capacity for self-regulation, commonly known as willpower, according to psychologist Roy Baumeister. [5] Plainly speaking, willpower helps you to do those things you know you should do but just don’t want to, like working on that boring term paper even though you’d rather play World of Warcraft. Willpower and intelligence are the two prime determinants of success in almost every aspect of life, and unlike the latter, the former is easy to train (for example with the conscious efforts for standing straight), according to Baumeister and John Tierney, authors of Willpower: Rediscovering the Greatest Human Strength.

To sum it up, working on your posture offers several benefits for both your mood and your sex life. While a bad posture is an unlucky side-effect of our modern environment, to which our good old hunter-gatherer genes just did not have time to adapt to, there are plenty of ways to fix this circumstance. A few nice exercises can do a great deal for fixing your posture and your fitness, and working consciously and constantly on your posture increases your ability for self-regulation, an essential pre-requisite for success in life. So, time to stand up straight!

To finish it up, here are the 5 best ways to quickly improve your posture:

  1. Be consci ous! Not quite what you expected? Well, until a good posture becomes a habit (i.e. you do it automatically), it takes time! Get up frequently, make it a walk around a bit (like ten minutes) after 50 minutes of work, sit up straight every time you think about it! It will also improve your performance in front of the laptop. Every time you notice you slouch, consciously go into an active posture!
  2. Play! Don’t just lift for health (although this is great obviously), but perhaps get an additional motivation for it. Do competitive powerlifting or weightlifting, climb, play soccer, you name it. All this will strengthen your body, and better your posture by strengthening your lower body.
  3. Squat! My favourite exercise, deep, gluteus maximus heavy squats (after which you’ll feel your butt) are great for your posture! Strong glutes serve as a firm basis for your spine, keeping it in a proper position.
  4. Pull-up! As mentioned above, balance your chest work-out with an upper back workout (they are antagonists after all). This will counteract imbalances for over-zealous benching!
  5. Core-up (Yeah not the best abbreviation, but it fits well with pull-up 😉)! Your abdominal muscles keep your body from collapsing inwards (towards your belly), and they are always working when you are in an erect (i.e. not lying) position. Strenghten this region and your posture will benefit!

 

[1]http://www.bbc.co.uk/wales/raiseyourgame/sites/preparation/healthybody/pages/sammy_margo2.shtml).

[2] https://arstechnica.com/science/2015/04/power-poses-might-not-be-so-powerful-after-all/

[3] http://www.dailymail.co.uk/health/article-2295420/Stand-straight-stay-fighting-fit-From-raised-blood-pressure-bloated-stomach-surprising-effects-bad-posture.html)

[4] https://www.nhs.uk/Livewell/Backpain/Pages/back-pain-and-common-posture-mistakes.aspx

[5] Baumeister, R. F., & Tierney, J. (2012). Willpower: Rediscovering the greatest human strength. New York: Penguin Books.

Is exercise an addiction? An opinion article

By Wietse In het Panhuis

We probably all know the good feeling during exercise. Either we are in the gym lifting weights to become stronger, bigger and fitter, or we are running or cycling outside or practicing any performance sport. All of us who are very dedicated to training a lot experience this positive feeling during our training and a feeling of satisfaction afterwards. Exercise makes you feel confident in your body and makes you stress free. For those who train every (other) day of the week probably also know the feeling of not exercising for a couple of days in a row. This gives a feeling of restlessness, perhaps makes you a bit down, while being impatient to train again. For some people not training for three days in a row can be stressful. Is this a sign that exercise may be addictive? It isn’t, because training a lot is healthy, right? If it’s an addiction it’s a healthy addiction , and nothing compared to a substance addiction such as alcohol. It is better than going out, drinking a lot or unhealthy snacking. Of course, these things are much different when they are compared with each other, but does that mean that exercise is not an addiction nonetheless?

What defines addiction?   
Like any other term, phenomenon or condition there are countless definitions. Thus, while one definition may refer to addiction, another might not. Therefore it is always difficult to come to a conclusion and reach consensus. However, a distinguishment can be made between dictionary definitions and clinical definitions. Where dictionary definitions shortly and broadly describe something, clinical definitions are elaborate and detailed. Hence, in a clinical situation such definitions are needed to establish whether a certain disease is present or not. Hereby, there may be a difference in what the public refers to as an addiction compared to what a clinician would refer to.

Let’s start off with the following definition regarding addiction by the Cambridge dictionary: “The need or strong desire to do or to have something, or a very strong liking for something”. By means of this definition, exercise could be an addiction. The word addiction has quite a negative undertone, but when looking at this definition, is it really? Is it bad to have a strong desire for and liking of exercise? No, probably not. An exercise addiction in light of this definition seems neither negative nor positive. It’s just a matter of liking.

Another definition states addiction to be “a persistent compulsive use of a substance or action known by the user to be harmful”. Knowing that exercise is beneficial for human health, exercise would not be an addiction according to this definition. This definition mainly implies addiction to substances like drugs.

A medical definition, from the American Society of Addiction Medicine, regarding addiction states the following: “Addiction is a primary, chronic disease of brain reward, motivation, memory and related circuitry[…] This is reflected in an individual pathologically pursuing reward and/or relief by substance use and other behaviors. Addiction is characterized by inability to consistently abstain, impairment in behavioral control, craving, diminished recognition of significant problems with one’s behaviors and interpersonal relationships, and a dysfunctional emotional response […]”[1] Note that all of those definitions acknowledge that behaviours, in addition to substances, potentially lead to addiction! Still, only gambling is officially recognized as a behavioural addiction as of yet, though internet and food addiction are vivid areas of research [2,3]. A clinician would hereby be careful to diagnose an excessive exerciser as an addict. Some aspects of this definition – such as the pursue of reward, inability to abstain (or stop) exercising, craving and possibly more – might hold true for exercise, but these are much less severe than when compared to a substance (or gambling) addiction. These aspects translate to a physical or mental dependency on exercise. This would mean that when the use of for example a substance would stop, the addict would suffer physical or mental consequences, also referred to as withdrawal symptoms. So when someone is used to exercising very often and suddenly stops doing this, he or she would probably experience some negative withdrawal symptoms. These are different for every person. While some may not experience these symptoms at all, others might become depressed, and everything within that spectrum.

During exercise, dopamine and many other chemicals such as endorphins are released in the brain. All these hormones and neurotransmitters lead to increased euphoria (happiness), reduction of anxiety and increases in pain threshold. Dopamine and endorphins are the feel-good neurotransmitter that play a role in the reward center of the brain. From eating delicious foods to winning a game and taking certain drugs, dopamine is the chemical that make us want it, and endorphins the one that makes us enjoy it. Without dopamine, you wouldn’t be stimulated to eat dessert after you are already satiated once you finished a two-course meal. Dopamine makes us repeat the actions that lead to its release in order to get the feeling of happiness again. Endorphins inhibit pain signals and could give a feeling of euphoria (a well-known example of this is the runner’s high). Endorphins act on opioid receptors. The opioid receptor works like any other receptor: it is plastic, meaning that it can change. Receptors can adapt to a changing environment by increasing or decreasing in number and also by becoming more or less sensitive, depending on the amount of substrate (in this case endorphins) that is present. We probably all recognize this in caffeine: when you hardly ever drink caffeine, you get very energetic after drinking one cup of coffee, but when you drink it more often you need more cups to get the same effect. This receptor desensitization (becoming less sensitive to stimuli and needing more of a stimuli to reach the same effect) also occurs with the opioid receptor. When one exercises very often, more endorphins are released on a daily basis than without the exercise. One becomes used to these higher levels of endorphins. Suddenly stopping with exercising daily would thereby result in a ‘blue Monday’: a lack of ‘happy hormones’ that makes you feel down. This could cause a physical dependence of exercise.

However, like stated before, an exercise addiction is not the same as an alcohol addiction. Where exercise is healthy for the body, excess alcohol is detrimental. So according to the definitions of liking or dependency as a criterion of addiction exercise can be an addiction, but not according to the clinical definition, nor is exercise harmful to the user. So is any dependency on something by definition an addiction? Are the things that stimulate dopamine and endorphin release in the reward center of the brain addictive? If you love listening to music and would suddenly stop having music in your life, would that be considered an addiction? Probably not. Or if you would have problems with abstaining from the toilet which results in a bit more than minor discomfort… 😉 The same goes for reading a good book, enjoying good company, dancing, fishing, and so on. These are the many simple things in life that we enjoy doing. If we can’t have those simple things we would be disappointed, but that does not mean we are addicted. Like mentioned before, the brain simply functions in this way in order to stimulate behavior that is considered beneficial. These little things make us happy and make us enjoy our lives. Without them, there would be no happiness in this world, therefore we must be allowed to enjoy them. It is only when these things become too important that they bring you physically or mentally out of balance, that it could become a problem.

One might say that in general something is not an addiction as long as there are no negative consequences. Does this mean that as long as one just exercises frequently without any adverse mental or physical effects, exercise is not an addiction? We already know that clinically speaking, exercise is probably not an addiction. However, if at any point exercise has adverse mental of physical effects, can it be considered a sort of addiction or compulsive behavior? One review that looked at people who are exercise dependent found that compulsive exercise is associated with eating disorder pathology, perfectionism, neuroticism, narcissism, and obsessive compulsive traits[4]. This doesn’t mean that anyone who exercises a lot will get these problems or traits, but it means that these problems or traits occur more often in an exercise dependent person that in an exercise independent person. It might be that people who are more likely to get these traits become exercise dependent more often than other people. It might also be that an extreme form of exercise triggers these problems or traits. However, this topic of research is still behind, due to the lack of research and methodological problems. If these problems or traits are not present we probably tend to conclude that exercise is not harmful, but is that true? Would there be a realistic situation that could occur in any of us where an exercise dependency becomes harmful?

When the consequences of exercise become negative   
There seems one possible and logical situation where exercise dependency has negative consequences: when one is not able to exercise anymore, of which injuries are the most common cause.

There are two problems regarding injuries with exercising a lot. First of all, exercising a lot could lead to training too much and thereby an increased risk of overuse injuries. Knowing how to train safe and smart could help a great deal with injury prevention, but there is always a chance on an accident. Secondly, exercise dependency makes one want to train often without skipping a training. It is therefore difficult to get enough rest to recover and to rehabilitate steadily without overtraining. One study that nicely illustrates this looked at interviews with physiotherapists, who had treated injured people with an exercise dependency [5]. These therapists stated that the largest problem in treating these people was the low compliance when they asked them to exercise less. In other words, recovery from their injuries was hampered by the fact that they were not able to abstain from exercising.

Mainly this last aspect complicates the whole injury situation. Rationally one knows to take it easy in order to recover, but often this is too difficult. One ends up doing too much, resulting in a worsening of the injury, leaving you at the end and beginning of a vicious circle. One could stay within this circle for quite a while during which the situation keeps spiraling downward, until one finally realizes: it can’t go on like this. Meanwhile, the situation has hit rock bottom, where exercising (daily) has become impossible. In addition, daily life has become a struggle: walking, standing, even sitting causes pain. The feeling of missing a normal training becomes stronger and stronger. The body starts to become weaker and less muscular, stress increases, and one misses its most important outlet. Feelings of stress, anxiety and depression increase. At this point one wonders how much he would give to get out of this situation. Looking jealously how others are exercising like ever before, wondering why they can while you can’t. At this point you realize: I show signs of addiction. Which is just like what happened to me.

My personal experience   
I wrote this article because I found out for myself how addicted I was to exercise while I had been injured for a very long time. I suffered from a back injury for three years. The paragraph above roughly describes the development of my injury. I was in this downward spiral where I tried to train, ending up worsening the injury and the situation, after which the circle started again from the beginning. I quickly started to notice the injury in my daily life. I couldn’t walk for 20 minutes without noticing it, the same went for sitting. Standing was even worse. It caused me stress. There were moments I felt depressed (depression is a condition from which I did not suffer and I don’t want to speak lightly of it, but you get the point). I couldn’t enjoy the simple things anymore, because I was too distracted by the injury. I had been to six different physiotherapists. All of them were able to help me in the beginning, but after ending up in another downward spiral, they did not succeed in lifting me up from it again. At one point, it was so bad I couldn’t even go to the supermarket and do groceries anymore. It was the first year of my master, and it started halfway the first year of my bachelor. At this point I was often thinking about doing an internship in the next year, requiring 9 to 5 attendance. How would that on earth be possible, when I was laying down in bed half of the day? Let alone getting a job after my internship?

In the meantime I had been to so many physiotherapists, I started losing something much more important than my strength, fitness and muscle mass I had been working on for years. I started losing hope. I always thought at some point in my life I must recover from the injury, naturally. It made sense that this was a temporary thing and that it must go over at some point, but now I started to lose that confidence. If it had to end at some point, it first should be preceded by change or improvement, but improvement was not coming. Therefore, I gained the mentality to try anything that would give a slight chance of improvement. Someone recommended a physiotherapist who had helped him before. I did not have much confidence that it would help, but I went anyway.

At the beginning of every first session with a physiotherapist, the therapist will ask you to explain the situation and the symptoms of the injury. Like any other time, I explained in a mere 10 minutes what was going on. To explain the whole situation I would need about a day or write a whole book, but I did the best I could to give a good depiction of the situation. I told about all the advice I had been given by previous therapists and that I took all their advice to heart by doing all the required exercises, stretches, and any other possible beneficial action on a daily basis. Somewhere in the middle of my story he interrupted me and said “what exactly is the problem? You are not in great pain, your back can make all movements without problems, nothing seems to be wrong with your back. All you seem to have is some feeling in your back. You know, I think all those physiotherapists have driven you crazy: “Pay attention to this, pay attention to that, keep this straight, don’t forget that”. Just let it go. Just move on.” And so his speech continued for a while. Within half an hour I stood outside of his practice. After three years I found out that the problem had grown in my head. I was so intensely focused on my injury that anything I felt in my back caused me anxiety. Any stimulus would tell me something was wrong, that I was exhausting my back, that I had to lay down. This pattern had caused me to become so inactive and not used to moving, that it made sense that any movement would result in some feeling in my back. It made sense that when I would walk for 20 minutes I would start feeling my back, because I was not used to it anymore. I misinterpreted the stimuli since I didn’t know the reaction of my own body anymore. The day prior to the visit to this therapist I was not able to go to the supermarket and do groceries. This day I went cycling and walked for over half an hour. The week after I started exercising. I could again go out on a trip, visit family, go on a weekend trip. All things I couldn’t do before without having stress and anxiety, without enjoying them, I could now do again. It felt like my life has stood still for three years and I could start living again. Nowadays I am no more limited by my injury and I am doing my internship from 9 to 5.

In conclusion   
I experienced for myself the huge impact of restraining from training after exercise dependence. From physically feeling down and stressed to mentally seeing everything I worked for disappear. If I would have to answer the question “Is exercise addictive?” I would say that it can be considered a small addiction, even though clinically it is not recognized as an addiction. However, the purpose of the article was not to quarrel about definitions or only show scientific articles, but I wanted to show the human perspective, hence I called this an opinion article. I would say that if exercise would be considered addictive, it doesn’t have to be a problem. Like anything or any activity that brings us joy, exercise can brighten our lives as long as it doesn’t get out of proportion. If your whole world does not evolve around exercise, it wouldn’t be unbearable when suddenly exercising wouldn’t be possible anymore.

I would just advise to sometimes stand still and think about the transience of life. One day we will be old and our exercise performance will decline, so it should not happen that we lose our happiness when we get older. Realizing this from time to time will bring us perspective on what is important in life. Similarly, something detrimental could happen to us at any moment in life. When we are aware of this, we will be prepared and able to deal with it when it happens.

Always wanting to lift more weight, to get stronger, to be fitter, to look better is something you strive for when you are training passionately. However, at some point we must be satisfied with where we are. Enjoying what we have without always wanting more is an undervalued capacity nowadays. When we think in light of this about the endorphin story again, we know that exposure to more endorphins desensitizes the receptor. Always wanting more does therefore not work. When you get more, the next time you need even more to stay happy. Finally you would end up drinking 10 cups of coffee a day. A man who wins the lottery is thrilled of excitement one day, but this effect slowly wears off and in the end the money didn’t buy long-lasting happiness. It becomes boring. Similarly, this can be compared to a phenomenon called muscle dysmorphia (or in bro terms ‘bigorexia’), during which people feel like they are not muscular or can only see their shortcomings, even though these people are very ripped. It’s programmed in our brains and society to want more, but wanting more is not possible every single day. Happiness without sadness doesn’t give happiness. You can’t be happy every moment of the day during every day of the year. In our current society we have the idea that we should always be happy and when this doesn’t happen we are afraid that we don’t enjoy our lives.

Maybe our opioid receptors need a day off every now and then. Just once in awhile, a single day to not experience much joy. To stay inactive. To rest and sensitize. So the next time they get a glimpse of happiness, they take the opportunity to enjoy it to the fullest. And maybe so should we.

 

References
[1] ASAM Board of Directors, American Society of Addiction Medicine. (2011, April 19). Retrieved December 08, 2017, from https://www.asam.org/resources/definition-of-addiction
[2] O’Brien, Charles. “Addiction and dependence in DSM-V.” Addiction 106: 866–867 (2011): 10.1111/j.1360-0443.2010.03144.x
[3] Potenza, Marc N. “Non-Substance Addictive Behaviors in the Context of DSM-5.” Addictive behaviors 39.1 (2014): 10.1016/j.addbeh.2013.09.004. PMC. Web. 8 Dec. 2017.
[4] Lichtenstein, Mia Beck et al. “Compulsive Exercise: Links, Risks and Challenges Faced.” Psychology Research and Behavior Management 10 (2017): 10.2147/PRBM.S113093. 85–95. PMC. Web. 8 Dec. 2017.
[5] Adams, J., & Kirkby, R. (1997). Exercise dependence: A problem for sports physiotherapists. Australian journal of physiotherapy, 43(1), 53-58.

Bulking advice for hardgainers

By Fleur van Griensven 

Stuffing your face all day long without getting fat seems like the ultimate dream for most people, right? For some people however, eating a lot with the purpose of gaining weight can be difficult. They have probably tried many things to get more calories in, but this resulted in a smaller amount of weight gain than they had hoped for. If you are one of those people, keep on reading here to find out which foods and tricks you can use to make your bulk a bit easier and more enjoyable: ….

 

Introduction

This article might be a bit more practical than you are used to. I am not going to tell you what bulking is, the best way to do so in my opinion or whether you should bulk or cut. I might write a series of articles about bulking in the future if there is interest. For now, I just want to help by giving tips on how to make eating a lot of food easier if you are struggling to get your daily bulking calories in.

 

What is a hardgainer?

The term hardgainer is often used for people who find it difficult to gain weight and eat a lot of food. Sometimes there is confusion about the term hardgainer: it is thought that these people can’t gain as much weight as ‘normal’ people and are thus in a metabolic disadvantage for weight gain. This is not what is meant when someone is a hardgainer. These people can gain as much weight as everyone else. They just have more difficulty eating all the food they need to eat in order to gain weight. Often it is a lack of discipline to sustain a caloric surplus, so it is a psychological problem instead of a physiological one. That is also where the solution to this very simple problem seems to be: just eat more food and you will gain weight!

 

Why and when can bulking be difficult?

Simply saying eat more food to someone who is a hardgainer might not be the proper answer. There are many reasons why bulking can be more difficult for some than for others, thus recognizing them can help to counteract them.

I have listed down a few things that people encounter. This especially holds true when you bulk for a long period. Since the purpose of a bulk is to gain muscle (whilst keeping fat gain to a minimum), you will gain weight. This means that as you bulk longer your body needs more calories to simply maintain its increased weight as a result of the bulk. On top of that, you need to eat above maintenance calories or in a caloric surplus to gain muscle. So, as your weight increases you need to adjust your calories upward to maintain a caloric surplus and to continue gaining muscle.

Look below if you have encountered one of these problems whilst bulking yourself:

  • Feeling full or not hungry. As said before, you are basically ‘overfeeding’ your body whilst bulking. You are eating more calories than you need in order to use the extra calories for the process of muscle building and recovery. However, physiologically you can run into some struggles: not hungry, feeling full all day and as a result not wanting to eat all the food you should eat in order to be in a caloric surplus.

 

  • Busy all day, no time to make food or forgetting to eat. The number one answer you will get when you ask: ‘Why do you find bulking difficult?’ is going to be ‘I don’t have the time to prepare all the food’. Seriously? We live in a society where food is basically everywhere. No need to hunt for your own protein or bake your own bread. The next time you hear someone saying that they don’t have the time to make food, you just tell them to run to the nearest supermarket! Okay, no nonsense, but everyone is busy these days so it’s more a matter of making time to buy groceries or prepare meals if this helps you to keep up with a busy schedule.

 

  • High activity levels. There are also people with a very physically active job. Compare two men: one has a 9-5 job at the office and one works in the construction sector. They both have the same weight, height and age but completely different activity levels. The daily activity, or also called PAL (=Physical Activity Level), is taken into account when calculating maintenance calories. To calculate maintenance calories the BMR (=Basal Metabolic Rate) is multiplied by the PAL. This PAL will be anywhere between 1.40-1.69 for the man working at the office, since he is considered to live a sedentary lifestyle. The construction worker can have a PAL anywhere between 1.70-1.99 [1]. If their BMR is 1800 kcals, it gives a minimum maintenance calories of 2520 kcals for the man working at the office and 3060 kcals for the construction worker. This is a difference of 540 kcals. Making use of PAL for calculating maintenance calories will probably be a good starting point, but it might needs some tweaks here and there to find out your own true maintenance calories. To get back to the point, high activity levels can result in an increased energy expenditure and therefore require a higher food intake. This can lead to a lot of extra food that needs to be eaten, which can be difficult if you’re extremely active at work.

 

  • Unconsciously being more active. Maybe you have noticed it yourself during a bulk: pace up and down (in Dutch: ijsberen) whilst waiting for the train and not being able to sit still for a second. Even small movements with your hands/feets, that you probably aren’t conscious of, are part of this. These movements and all the energy expended for every action that does not belong to sleeping, eating or exercise are called NEAT (=Non-Exercise Activity Thermogenesis). Physiological studies demonstrate that NEAT is modulated with changes in energy balance: NEAT increases with overfeeding and decreases with underfeeding [2].

A study done by Levine et al. concluded that an unconscious increase in NEAT explains why some individuals can purposely increase daily energy intake above maintenance (1000 caloric surplus for 8 weeks in this study) and still experience a lack of weight gain. Without them knowing they get more active during the day and thus partly cancel the targeted caloric surplus [3].

Which foods make bulking easier?

  • Lower volume or foods with a high energy density. Energy density, that is the calories in a given weight of food, could affect satiety by influencing the rate at which nutrients reach receptors involved in satiety [4]. Eating foods with a high energy density, that contain a lot of calories per 100 g of product, helps reducing the amount of food consumption required for a given level of energy intake [5]. This comes in handy for hardgainers who can make use of eating high energy dense foods. Most of these high-energy dense foods are considered not to be rich in nutrients like minerals, vitamins and fibers and thus considered to contain ‘empty calories’. Realize that it is not so black and white and that not all energy-dense foods are bad for you. Even though one particular food might not be the healthiest option or contain a lot of nutrients, you still have to look at the diet as a whole. A few high energy dense foods are: deep-fried foods, pasta, full fat cheese, nuts and seeds.

 

  • Making foods liquid or making shakes. There are weight gainers on the market these days, but it is also simple to make shakes high in calories yourself. These homemade shakes can be full of nutrients, among which complex carbs, healthy fats and fiber. For example, you can use oats, (full)milk, whey protein as a basis and additionally add fruits, avocado, peanut butter or even olive oil if you are a real diehard. The evidence that liquids are truly less satiating than solid foods remains inconclusive, so more research is needed [6]. You can find out for yourself if you feel less satiated when consuming liquid calories instead of solid foods.

 

  • Foods high in (healthy) fat. As a macronutrient, fats are relatively energy dense with 9 kcals per gram in comparison to 4 kcals per gram for both carbs and protein. They therefore are a great addition to your bulking diet. A few foods high in (healthy) fat are listed below:

– Full dairy products. These products often contain a high amount of saturated fatty acids, also called SFA’s. Those SFA’s do have a bad reputation these days. However, saturated fats are probably not as bad for our health as thought. A review performed by Lawrence and colleagues revealed that dietary saturated fatty acids (SFAs) are not associated with CAD (=Coronary Artery disease, which could result in heart failure) and other adverse health effects. At worst saturated fats are weakly associated in some analyses when other contributing factors may be overlooked. Several recent analyses indicate that SFAs, particularly in dairy products and coconut oil, can improve health [7]. We can’t conclude that saturated fats are 100% sure not bad for our health because there still is a lot of research going on. It seems that saturated fat in dairy products isn’t so bad, but no recommendations can be made yet.

More foods which are high in (healthy) fat:

-Nuts or nut butters.

-Avocado.

-Coconut/coconut oil.

-Olive oil.

-More than 70% cacoa chocolate.

-Fatty fish.

-Eggs.

 

  • Carbohydrates. They are the main energy source of a diet [8]. How many carbohydrates you can consume before it becomes not that healthy is dependent on the situation. A diet which is high in sugar is probably not beneficial for your health [7]. Some key points to keep in mind whilst bulking: limit the amount of sugar, consume enough fibre and don’t overshoot on calories.

Next to this, research indicated that carbohydrates are less satiating than protein [9]. Consuming extra protein when protein requirements are fulfilled is thus not smart. You are probably better of eating these calories in the form of carbohydrates or fats. Another argument for not consuming excessive protein is that the TEF (=Thermic Effect of Food) is the highest for protein. This is the amount of energy needed to digest and absorb food. Since the TEF is the highest for protein, they are the hardest to digest [10].

There are way too many carbohydrates to sum up here, but one thing that I really like to eat when bulking are dried fruits. Raisins, figs, dates and apricots can be a great addition to your diet. Next to containing a lot of calories they do contain lots of vitamins (B1&B6), minerals (magnesium, iron, potassium, folic acid) and fiber.

 

Any other tips

As I said before, unconsciously being more active and thus burning a part or your whole caloric surplus can be easily tackled. Make yourself conscious of doing this and don’t get your energy expended on NEAT if you have a hard time getting a lot of calories in.

The same goes for doing cardio whilst bulking. True, numerous studies have shown that moderate to high levels of physical activity are protective against cardiovascular disease [11]. However, cardio also burns calories depending on the time/duration/intensity and type of cardio performed. Hardgainers, who already struggle, are making it even harder for themselves. They thus need to eat the extra calories burned in order to be in the same caloric surplus at the end of the day.

Combining different products makes you able to eat more food [12]. For example, when going out for a fancy 10 course dinner. After course 7 you are already full, but still got room for a dessert and coffee/tea with chocolate. Because you have been eating savory things, you can still eat a sweet dessert. You can also use this yourself, by making meals or even shakes where you combine sweet/savory/bitter products.

Next to that, the faster you eat the more you can eat before you will be satiated [13]. There is a small delay in experiencing satiation. If you eat a soup half an hour before dinner, you will eat less of that meal compared to when you would only eat dinner. Thus when bulking, stop snacking just before having a meal!

There are hardgainers who think that they are gaining a lot of weight just because once in awhile they go all out and stuff their face with an enormous surplus of calories. They believe that they have consumed such an amount of food on this one day, that they also eat this much on a daily basis. It is something psychological which they are convinced of. Consuming occasionally an enormous surplus, also called binge eating, isn’t as effective as consuming a (small) daily caloric surplus. Have you ever tried drinking 5 protein shakes consecutively and 10 minutes later you find yourself on the toilet for the next hour? Still convinced that you have absorbed it all?

 

Conclusion

After reading this article, i hope you got some insight into why bulking can be more difficult for some than for others. Yes, eating a lot of food isn’t always easy. It is often more a psychological than a physiological problem which causes people not to gain the amount of weight they had hoped for during a bulk. I have listed some foods and gave some tips which will hopefully make your next bulk a piece of cake. Oh wait, with icecream and whipped cream of course, all for those extra calories which are more than welcome if you believe you are a hardgainer!

 

References

[1] Physical Activity level. https://en.wikipedia.org/wiki/Physical_activity_level. Retrieved on 4-11-2017.

[2] Levine, JA (2002). Non-exercise activity thermogenesis (NEAT). Best Practice&Research Clinical Endocrinology&Metabolism. 16(4), 679-702

[3] Levine, JA et all. (1999). Role of non-exercise activity thermogenesis in resistance to fat gain in humans. Science. 283(5399), 212-4.

[4] Kissileff, H.R. et all. (1984). The satiating efficiency of foods. Physiology of Behavior. 32, 319–332.

[5] Rolls, B. (1995). Effects of food quality, quantity and variety on intake. Not eating enough: overcoming under consumption of military operational ration

[6] Almiron-Roig, E (2003). Liquid calories and the failure of satiety: how good is the evidence? Obes Rev. 4(4), 201-212.

[7] Lawrence, G (2013). Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv. Nutr. 4, 294-302

[8] Jequier, E (1994). Carbohydrates as a source of energy. American Journal of Clinical Nutrition. 59(3), 682-685.

[9] Bertenshaw, E (2008). Satiating effects of protein but not carbohydrate consumed in a between-meal beverage context. Physiology of Behavior. 93(3), 427-436

[10] Westerterp, K. (2004). Diet induced thermogenis. Nutrition&Metabolism.

[11] Joyner, M (2009). Exercise protects the cardiovascular system: effects beyond traditional risk factors. Journal of Physiology. 587(23), 5551-5558

[12] McCrory, MA (2012). Dietary (sensory) variety and energy balance. Physiology of Behaviour. 107(4), 576-583

[13] College Regulatie van honger en verzadiging, WUR HNE-20306 Nutritional Behaviour.

Do women naturally have less muscle building potential than men?

By Fleur van Griensven

When a girl tells people she just started lifting, they often think that she will wake up as a Hulk the next day. They think that lifting makes women look bulky, so they shouldn’t train like men. Another thing you often hear, is that women can never get as big as men, but is that true? Do women naturally have less muscular potential than men? Or can we finally acknowledge the fact that women should train heavy too and that a lot of girls are not living up to their potential by lifting 2 kg pink dumbbells?

Woman_1

The natural muscular potential of women.

Popular opinion is that men have more muscular potential than women and thus can gain more muscle. However, some research indicates that women naturally have roughly the same muscle building potential. A prospective intervention study examined the influences of gender on muscle size responses to strength training. The results were that women can gain the same percentage of muscle mass compared to men during strength training [1].

Studies on protein synthesis came also to the same conclusion. Women have similar muscle protein synthesis rates and thus seem to build the same amount of muscle protein after training compared to men [2]. This is however the conclusion of only a few studies, so more research is definitely needed to be 100% clear that women do naturally have the same muscle building potential. However, this is difficult because these studies take a long time and need to be well-controlled.

When women start training they do have a different body composition. Most of the times, women have less muscle mass and more fat mass compared to men. Women have +/- 12% essential body fat compared to just +/- 3% fat in men [3]. Essential body fat is all the fat which we can not lose without it negatively affecting our physiological functions. It surrounds our organs and nerve tissues. Men and women do have a different starting point when it comes to muscle mass, but they seem to be gaining muscle mass at the same rate. Keep in mind that for the rest of this article I always compare men with a starting point to women with the same starting point, so a same body composition.

How about testosterone?

Testosterone is the most important male sex hormone. Women however do also produce testosterone, even though they have 15 times less active testosterone than men, under normal circumstances [4]. Besides the known functions of testosterone in our body, like development of primary/secondary sexual characteristics and production of sperm, it also plays a positive role in muscle building. Testosterone is an anabolic hormone, which means that it stimulates muscle protein synthesis and thus muscle growth.

Is it then true, because women have less testosterone they also have less potential to build muscle mass? No, this is probably not the case. The testosterone functions are different in men and women. What comes next might be a bit of a complicated story with terms you never heard about, but do not worry about that and try to see the big picture in why having less testosterone as a woman is not that bad at all.

It seems that testosterone is not needed for muscle development in women because growth factors like IGF-1 and growth hormone take over the anabolic role that testosterone plays in men [5]. This has been found in an animal study done with mice, so more studies are necessary to test if this is the case in humans too. However since women can gain muscle with lower testosterone levels, it can be safely assumed that other hormones besides testosterone are involved in this muscle building process.

Women have just as much IGF-1 and produce +/- 3 times as much growth hormone as men [6]. This study shows that despite the fact that women have lower testosterone levels than men, they do have higher growth hormone levels. It could be possible that in women growth hormone partly takes over the role of testosterone. This explains why having less testosterone does probably not limit how much muscle women can build. People think that testosterone is the most important hormone, but there are more hormones that play a role in muscle growth.

The other (sex)hormones combined with the advantages/disadvantages women have.

Estrogen

Where testosterone is the most important male sex hormone, estrogen is the most important female sex hormone. Estrogen is commonly seen as the hormone that makes you fat and frail. However, its positive effects should not be disregarded. Some of these positive physiological effects are:

  • It is anti-catabolic, which means that it prevents muscle loss [7].
  • It aids in muscle repair [8].
  • It is good for connective tissue (bones, ligaments etc.).

The bad reputation of estrogen is based on nothing more than the assumption that if testosterone is anabolic, estrogen must be catabolic. There is a lot of ongoing research and there are indications that it plays a role in muscle growth and the well-being of skeletal muscle. However, more research is needed in the future.

Progesterone

One big disadvantage for a lot of women these days is the use of the anti-contraceptive pill. This holds especially true for the ones containing a lot of progesterone. They do have a negative effect on muscle growth compared to not using an anti-contraceptive pill, because progesterone competes with testosterone for the androgen receptor. Basically, this comes down to less active testosterone when you take in an anti-contraceptive pill with a lot of progesterone [9]. How much of a negative effect occurs is hard to tell, because it is very difficult to study.

Here is a practical tip which you can use to take advantage of the benefit we have being a woman. Hopefully this and more research in the future about some other topics relating the effects of hormones on muscle growth will help you get the most out of your training sessions!

  • We can use a higher rep range.

There are two types of muscle fibres: Type I&II. Type I muscle fibers are known as slow-twitch muscle fibers, which makes them able to contract for a long period of time and more resistant to fatigue. Being able to contract for a long period of time could mean that women can benefit from a higher rep range. This could mean that for women to grow to their full potential, more reps per set need to be done to benefit from the type I fibres which are more  resistant to fatigue and can contract longer. One study came to the conclusion that during exercise in women, a potential conversion to type I muscle fibers or no conversion at all takes place [10]. This study looked at the muscle fibre adaptations during execution of a knee-extension exercise in both young men and women. They found a significant increase in percentage of type I fibres in young women. The study has its limitations: if the muscle fibres had been splitted into type Ia, IIa, IIb etcetera, no significant result would have been found. This also is anecdotal evidence and more research needs to be done.

Conclusion, do women naturally have less muscle building potential than men?

There is some research which indicates that women can gain the same percentage of muscle mass compared to men during strength training [1,2]. However more research is needed.

Why you see more men with a significant amount of muscle mass compared to women and why women aren’t 100% living up to their potential can be contributed to a lot of factors:

  • Mostly social-cultural. There are not as many women compared to men training with weights. If they do train, some of them just do not want to build as much mass as possible. Everyone has their own goal and idea of how they want to look. That is okay, as long as you do what makes you happy and never have someone telling you what you shouldn’t or can’t achieve.
  • If women go to the gym, they spend countless hours on the treadmill or playing around with pink dumbbells, that is for sure not 100% optimal if you want to build as much muscle mass as possible.
  • Oral-contraceptives, which have a negative effect on muscle growth. Part of the anabolic role of testosterone will be taken over by other hormones in women, so testosterone production probably does not limit how much muscle women can build.

More information about this topic for sure will come available in the future as more and more studies are being done on this interesting topic. When that time comes we will update this article and bring you the latest conclusions.

One take home message for all the women out there busting their ass off (or on) in the gym: you probably are not less capable of putting on muscle mass than men, and the only limitations you have are the ones you put on yourself!

References.

[1] Roth, SM (2001). Muscle size responses to strength training in young and older men and women. Journal of the American Geriatrics Society, 49(11), 1428-33.

[2] O’Hagan, FT (1995). Response to resistance training in young women and men. International journal of sports medicine, 16(5), 314-21.

[3] Vehrs, P (2013). Assessment and interpretation of body composition in physical education. Journal of Physical Education, Recreation & Dance, 46-51

[4] Wisse, B (2016, 2 March). Testosterone. Retrieved from https://medlineplus.gov/ency/article/003707.htm

[5] MacLean, HE (2008). Impaired skeletal muscle development and function in male, but not female, genomic androgen receptor knockout mice. FASEB journal, 22(8), 2676-89.

[6] Van den Berg, G (1996). An amplitude-specific divergence in the pulsatile mode of growth hormone (GH) secretion underlies the gender difference in mean GH concentrations in men and premenopausal women. Journal Clinical endocrinal Metab, 81(7), 2460-2467

[7] Hansen, Mette (2014). Influence of Sex and Estrogen on Musculotendinous Protein Turnover at Rest and after exercise. Exercise & Sport Sciences Reviews, 42(4), 183-192.

[8] Velders, M (2013). How Sex hormones promote skeletal muscle regeneration. Sports Medicine, 43(11), 1089-1100.

[9] Woock, C (2009). Oral Contraceptive use impairs muscle gains in young women. The FASEB Journal, 23(1).

[10] Martel, G (2006). Age and sex affect human muscle fibre adaptations to heavy resistance strength training. Experimental Physiology, 91(2), 457-464

 

BCAA’s: a smart marketing trick?

By Fleur van Griensven

BCAA’s are thought to put you in an anabolic state. Some people claim that you should use them before training when you are in a fasted state to prevent muscle loss. Is this true and should we all run to the nearest shop to spare our gains? Or is it just a smart marketing strategy from producing companies?

BCAAs_1

What are BCAA’s?

BCAA’s are branched-chain amino acids. These amino acids are branched (in Dutch vertakt), which in comparison to other amino acids makes it easier for enzymes to digest. Amino acids are the building blocks of proteins. When we consume protein our body uses specific enzymes which breaks these down into smaller units, the amino acids. There are 20 amino acids which can be converted into one another. At least, that’s true for the non-essential ones. The essential amino acids need to be present in our food because the body can’t synthesize them itself. There are 8 essential amino acids: Lysine, Tryptophan, Phenylalanine, Leucine, Isoleucine, Threonine, Methionine and Valine.

The three BCAA’s are Leucine, Isoleucine and Valine. During intensive activity, muscles will convert these quickly into energy. BCAA’s are supplemented just before or during training. The reason for supplementation is to stop muscle breakdown, recover quicker and in the long run build more muscle mass and strength. [1]

Are BCAA’s useful?

Many studies have been done on BCAA’s. A lot of people claim that you should take them before training fasted or during training. Some studies do find an effect of supplementation, whilst others don’t. There are many promising abstracts, but they are almost always hampered by lack of dietary control and/or a low protein intake. Making real conclusions based on these studies is hard.

The effectiveness of BCAA supplementation to reduce exercise-induced muscle soreness is mixed. One randomized placebo controlled study compared a BCAA’s + carbohydrate versus a carbohydrate sports drink following 3 days of intense weight training. BCAA + carbohydrate supplementation did not improve markers of muscle damage/soreness compared to carbohydrates only. [2]

A randomized, double-blind, placebo controlled study concluded the opposite. Participants received a BCAA supplement or a placebo. Before and after the damaging exercise (100 drop-jumps) they measured different muscle damage variables. They concluded that BCAA administered before and following damaging resistance exercise reduces markers of muscle damage and accelerates recovery in resistance-trained males. This might be due to greater bioavailability of substrate to improve protein synthesis. [3]

Research which shows a net anabolic effect of BCAA supplementation before, during or after training is often used to sell these powders [4]. Supplementing BCAA’s would eventually increase build-up of muscle. No evidence supports that ingestion of BCAA supplements is more effective than consuming a proper amount of food (protein) with respect to building muscle. In fact, there’s research to the contrary: food, and whey protein specifically, may be even more effective than a BCAA drink [5]. This is why you can consume a whey shake before training to get into a net anabolic state. It’s cheaper than BCAA powders, comes in many delicious flavours and is more effective.

What are the costs of BCAA’s?

BCAA’s can be bought in shops and online. The prices differ per brand and they sell both powders as tablets. For example, BCAA’s from Body & Fitshop will cost you €14,90 for 500 grams. The recommended daily serving is 20 grams before or during training, so a package lasts for about 25 days. Thus, quite expensive.

The amino acids shown in the picture above (Amino X from BSN) are even more expensive. You pay €19,90 for 435 grams. The daily serving is 29 grams, so you would pay €1,33 on a daily. Are these any better than Body & Fitshop own label? They both contain the three amino acids L-leucine, L-isoleucine and L-valine but probably in a bit different ratio. The Amino X also contains L-alanine, Taurine and L-arginine and vit D3 + vit B6. Will this add any effect to the product itself? Not sure, but you will just pay for something extra next to the BCAA’s you actually want to buy.

Selling BCAA’s on the market is a smart marketing strategy, because you basically pay for only three amino acids with a bit of a nice flavour added to it. Companies make good use of this by slogans as: ‘Amino X BSN, next level technology!’ or ‘BCAA Sensation V2 only contains the perfect ratio amino acids’. Yeah right if this would all be true, would just not one product with everything be enough? Companies try to come up with new things to make us consumers think that we just have to buy the new product. Smart marketing strategy it is!

Conclusion, BCAA’s: a smart marketing strategy?

Concluded can be so far:

  • The studies find a mixed effect of supplementation, but if they do find an effect are lacking in many aspects.
  • They are a smart marketing strategy.
  • They are expensive.
  • You can get your BCAA’s from food instead which is cheaper and more satisfying.BCAAs_2In general, there are studies that seem to show promising effects of supplementation. These however are hampered when taking a closer look. A whey shake just before training has shown to be even more effective in provoking a net anabolic response.

    If you think that you need to take a serving of BCAA’s before training fasted, first ask yourself the following. Is training fasted going to be any better in losing fat than having a meal and smash the hell out of your cardio session? An article about fasted morning cardio might follow, but at the end of the day it still comes down to being in a negative energy balance. If you enjoy doing cardio first thing in the morning go ahead, but don’t get deceived by this BCAA marketing strategy, drink a whey shake and save yourself money!

    References

    [1] BCAA. Retreived from: http://www.eigenkracht.nl/supplementen/specifieke-supplementen/bcaa

    [2] Wesley C. Kephart et all (2016). Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation. Journal of the International Society of Sports Nutrition.

    [3] Glyn Howatson et all (2012). Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. Journal of the International Society of Sports Nutrition

    [4] Sharp CP, Pearson DR (2010). Amino acid supplements and recovery from high-intensity resistance training. Journal Strength Conditioning Research.

    [5] Hulmi JJ et all (2010). Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutrition & Metabolism.

 

The optimal way of cardio for burning fat

By Wietse In het Panhuis

We probably all know the struggle of cutting. Sometimes it is difficult to lose fat, even though you are in a caloric deficit. Cardio is a helpful tool to cut down on body fat. Some speculation exists about the cardio intensity that would be optimal to burn fat. Is it better to do cardio with a low intensity for a long time, or a high intensity for a short time?

Energy systems in the body       
Before explaining what the ideal form of cardio is for burning fat, you should have a basic understanding of metabolism in the human body.

The body needs energy for a lot of different processes: basic functions to stay alive, repair and growth of tissue, and physical activity[1]. In this situation we are mainly interested in the latter one. The body gets its energy from the conversion of ATP to ADP (I am sure you know what that is by now). To create ATP, several forms of fuel are used, such as carbohydrates (sugars), fats (fatty acids), and ketone bodies (which are only formed and used when being in a fasted state). These fuels are present in blood and stored in the body. After a meal, food is digested and taken up in the blood via the intestines. However, only small amounts of nutrients are present in the blood, because the blood has a strict range of concentrations of nutrients and other compounds. If these concentrations would be much lower or higher, the body cannot function properly. For example, in total only a few grams of sugar are present in the blood, providing the body with about 20-30 kilo calories (kcal). When you cycle for 2 minutes, all of this sugar will be used up. Therefore, the body needs strict regulations of the nutrients: an excess of nutrients will be quickly stored, and a nutrient shortage will be compensated for by releasing nutrients from the body stores into the blood.

Carbohydrates and sugars are stored in glycogen in the muscle and liver. Fat is mostly stored in adipose (fat) tissue, and some of it in the muscles and around the organs. Proteins can also be used as energy fuel, for which they first have to be converted to sugars (and urea). Protein is present in lots of different tissue, but its main storage location is in the muscles.

When the body needs energy (for example during exercise), it does not exclusively use one type of fuel, instead it will use different forms of fuel at the same time[1]. The situation determines how much of a fuel is used. For instance, when you have not eaten for more than 24 hours, your glycogen stores will be low. Your body will then switch to more fat oxidation (the burning of fat to get energy), and the breakdown of protein (and thus muscle) will be increased in order to supply the body with enough glucose. The latter is important, because the brain can only use glucose as energy fuel, and not fat. If there would be no glucose, the brain would stop functioning. When you have just eaten a big meal, your body will switch to predominantly carbohydrates, and will thus burn less fat or breakdown less muscle for protein.

During exercise, the intensity determines how much carbohydrates and fats will be burned. In general, when exercise intensity increases, carbohydrate oxidation increases[1,2]. Also, fat oxidation will increase when exercise intensity increases, but at some point it will decrease again. Therefore, there is an optimal intensity to burn fat. Implementing this knowledge in your (cardio) workout, could help with optimizing fat loss.

Fatmax
Studies tried to investigate which exercise intensity is ideal for fat loss. This optimal fat burning point, or the exercise intensity at which the maximal fat oxidation rate occurs, has been named Fatmax[3]. Exercise intensity in cardio can be expressed in Wmax: The maximal amount of Watt produced before hitting failure. Wmax is closely related to VO2max, which is the maximal volume of oxygen the body is able to use. Wmax and VO2max therefore reflect pulmonary (lung) and cardiac (heart) functioning. Wmax and VO2max are therefore higher in trained athletes. A Wmax of 100% means maximal intensity of (cardio) exercise. At that point, the body simply cannot work harder because it cannot use more oxygen than it already does.

One study tried to investigate the amount of fat oxidation during different exercise intensities[2]. The exercise intensities in cardio were expressed in Wmax. This study compared the amount of carbohydrates and fats that are burned during rest and at a Wmax of 40%, 55% and 75%. As can be seen in Figure 1, at Wmax 40%, the body will have a fat oxidation of about 50% (muscle and plasma TG + plasma FFA is about 25 KJ/min which is half of the total energy that is burned(50 KJ/min)). At a Wmax of 55%, fat oxidation is about 46% (30 KJ/min fat oxidation, 35 KJ/min glucose oxidation, total 65 kJ/min), so at this point in absolute numbers more fat is burned, but since glucose oxidation increases more, relatively less fat is burned. At a Wmax of 75%, fat oxidation is about 20% (20 KJ/min of total 80 KJ/min), which is both lower in absolute and relative numbers. Thus, exercising at 40% of max Watt has the highest relative fat oxidation.

Figure 1. Quantification of glucose and fat oxidation during different exercise intensities. Muscle glycogen and plasma glucose are part of glucose oxidation, muscle and plasma TG and plasma FFA are part of fat oxidation. %Wmax= percentage of the maximal exercise intensity displayed in Watt. Copied from van Loon et al (2001)[2].

This does not mean that exercising at a Wmax of 40% is best for fat loss. Once again, it depends on the situation:

  1. When you have a lot of muscle mass and you are trying to lose some body fat to get to a low body fat percentage, it is important to minimize muscle loss. When the body is low on carbohydrates (during a cut), it will break down proteins and thus muscle mass to produce sugars. Loss of muscle muss is therefore minimized when fat oxidation is relatively high, and glucose oxidation relatively low. This is the case for a Wmax of 40%: less fat is burned than at a Wmax of 55%, but also much less glucose is burned. In this situation a Wmax of 40% might be ideal.
  2. When you don’t have a lot of muscle mass, and/or when you just want to lose a lot of fat, minimizing muscle mass loss is less important than losing fat. In this case, a Wmax of 55% might be more ideal. In this situation, energy balance is much more important: you just have to burn more than you eat. Therefore, you might also exercise at an intensity of 75% Wmax. You burn less fat and much more glucose in this case, but this will indirectly result in greater fat loss because fat stores will be burned to supply the body with enough energy. However, when having little carbohydrates/glycogen in the system, exercising at a high intensity is very heavy, and it might therefore be a better option to exercise at an intensity of 55% Wmax.

According to literature, the optimal fat burning point could be different for persons, as gender, age, training status, diet and body composition might play a role[3]. An explanation for this could be that the bodies of trained athletes and people who consume low carb diets (either by fasting or high fat diets in the absence of carbs) are more efficient by being better able to switch to fat oxidation. Furthermore, there is some variation in Wmax, as these might differ per day. This variation is estimated to be around 3 to 7%[4]. It is therefore difficult to implement the Fatmax concept with 100% accuracy in your training strategy. It might be that you need a slightly higher or lower intensity than what is recommended to have optimal fat oxidation. However, it might still be a good approach for cutting.

How to implement Fatmax in your training        
To start exercising at a certain intensity, you should know what your Wmax is. To determine Wmax, the following (simplified) protocol on a cycle ergometer could be used[4]:

  1. Warm up for 5 minutes at 100W for males or 75W for females. Maintain at least 60 rotations per minute during the whole test.
  2. Increase the intensity with 35W every 2 minutes, until exhaustion.

Exhaustion =  the point at which you cannot maintain 60 rotations per minute for more than 20 seconds

  1. Write down the maximal work load (W) at exhaustion.

Now you know your Wmax, you can implement the concept of Fatmax into your cardio workout schedule to optimize fat loss.

Conclusion
The concept of Fatmax might be useful with regard to weight loss programs. The concept is however based on assumptions of physiology. I could not find any randomized controlled trials that investigated the validity of Fatmax for weight loss in comparison to another exercise regime. Therefore, it is not sure if optimal fat oxidation results in significantly greater weight loss compared to other fat burning strategies. I would therefore recommend to primarily stick to the key concept in weight loss, which is a negative energy balance. If you are able to implement Fatmax in your weight loss schedule, you might give it a try.

In short, Fatmax can be implemented in your training by:

  1. Finding your Wmax with a cycling test.
  2. Exercise at 40% of Wmax if you want to minimize muscle loss during a cut.
  3. Exercise at 55% of Wmax if you want to maximize fat loss during a cut.
  4. Look at your total exercise energy expenditure. A lower %Wmax also means that the exercise duration should be longer in order to burn the same amount of calories.

References
[1] Jeukendrup, A., & Gleeson, M. (2010). Sport nutrition: an introduction to energy production and performance (No. Ed. 2). Human Kinetics.
[2] van Loon, L. J., Greenhaff, P. L., Constantin‐Teodosiu, D., Saris, W. H., & Wagenmakers, A. J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. The Journal of physiology536(1), 295-304.
[3] Ghanbari-Niaki, A., & Zare-Kookandeh, N. (2016). Maximal Lipid Oxidation (Fatmax) in Physical Exercise and Training: A review and Update. Annals of Applied Sport Science4(3), 0-0.
[4] Kuipers, H., Verstappen, F. T. J., Keizer, H. A., Geurten, P., & Van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International journal of sports medicine6(04), 197-201.

Is sleeping in during the weekend beneficial?

By Wietse In het Panhuis

Probably everyone recognizes this situation: You have had a busy work week, waking up early at 7 am every morning, and going to bed at 11 pm. On Friday, you feel tired and you have the feeling that you should catch up on sleep, but you also want to go to bed later, since it’s weekend. Therefore, you decide not to set your alarm clock on Saturday and Sunday. You stay up late on Friday and Saturday, and you wake up at 11 am on Saturday and Sunday morning. Is this a good idea? Does sleeping in really help to catch up on sleep, rest and recover?

Sleep deprivation          
As mentioned before in my other article on sleep and rest, there is not an optimal sleep duration that works for all people (if you missed the previous article, you can read it here:  https://wageningenbeasts.com/2016/12/04/optimizing-your-sleep-and-biological-rhythm/). Some people need much sleep, others need less. The reason for this is differences in habit, but also differences in genetics (and of course differences in age, but this can be neglected since the readers of this article are probably all students). Therefore, no solid recommendations can be done on how long you should sleep.

If you get less sleep than you need, sleep deprivation (the need for sleep) will accumulate. Often when you have one bad night of sleep, you will still feel fine the next day, but when this happens for a few nights in a row you will start to notice the effects of sleep deprivation. Of course I don’t have to explain to you that (chronic) sleep deprivation is bad for you and can have serious health consequences. That is probably also the reason you want to sleep late during the weekends, to get some more rest. In theory, it is true that the body needs to catch up on sleep when it is sleep deprived, so in that respect you are right. There are however other factors that play a role.

The biological clock       
Like mentioned before in my previous article, the biological clock is a mechanism that (a.o.) informs the body about time: the sensation of day and night. The biological clock is a complex system, because it can be influenced by many factors (think of light, psychological factors, activity, food intake). The complexity is also the reason why the biological clock does not adapt easily to changes in the daily routine. A jet-lag is a perfect example for this. After traveling it takes some time to adjust the sleep rhythm to the new time zone. However, it takes even longer before you are fully adapted to the new time (e.g. when you don’t need an alarm clock to wake up at a certain time). A rule of thumb is: don’t mess with your biological clock! It is best for the biological clock to have a regular pattern in sleep (most important), but also in things like food intake. Big changes in these patterns disturb the clock, which could result in sleeping problems, fatigue, changes in mood, concentration, study performance and metabolism, and in more severe cases (like chronic shift-work) in diseases like diabetes, cardiovascular disease and obesity, and even mortality[1-6]. A stable clock is therefore a healthy clock.

When you wake up early during the week and late in the weekend, this is confusing for the biological clock, especially when there is a great difference between the times of waking up. For each day you go to bed and wake up at a different time, the biological clock has to adapt. When sleeping in during the weekend and waking up early on Monday again, the biological clock keeps adapting back and forth. In this way, the body does not fully get used to waking up early during the week. This could possibly be the explanation why you are feeling tired during the week.

What I personally notice, is when I am not used to waking up early, and I wake up early even though I get my hours of sleep, I am still tired. This is because the biological clock is not used to waking up at a different hour, and not because the body did not get enough sleep. When sleeping in during the weekend, the body is not well-adapted to waking up early during the week, and this can cause the sensation of fatigue.

Conclusion
Thus, when you are tired after waking up early for a week, the likely cause of this is that your rhythm during the weekend is different, and not because you don’t get enough sleep. The latter is of course still a possibility, and in that case you could try to go to bed earlier to see if that helps. The answer to the question: ‘Is sleeping in during the weekend beneficial?’ is therefore: No, the benefits of some extra sleep do not outweigh the disadvantage of a disturbed biological clock. If you still want some extra sleep during the weekend, the best thing to do is to go to bed earlier.

Of course this is not a very attractive message. When it is Friday, we want to enjoy our weekend by staying up late and do fun things. This message discourages that. You might accept and implement this message by enjoying your weekend in the morning instead of late in the evening, but I can imagine that you don’t want to give up your nights out. Alternatively, when you go out partying, it might be better to still wake up early (maybe one hour later than on a weekday). In this way, you will have some sleep deprivation, but you can solve this by taking a power nap during the day or by going to sleep earlier in the evening. The upside of this, is that your biological rhythm will be more stable, which will be more beneficial in the long run.

References
[1] Åkerstedt, T., Kecklund, G., & Johansson, S. E. (2004). Shift work and mortality. Chronobiology international21(6), 1055-1061.
[2] Ramin, C., Devore, E. E., Wang, W., Pierre-Paul, J., Wegrzyn, L. R., & Schernhammer, E. S. (2015). Night shift work at specific age ranges and chronic disease risk factors. Occup Environ Med72(2), 100-107.
[3] Antunes, L. C., Levandovski, R., Dantas, G., Caumo, W., & Hidalgo, M. P. (2010). Obesity and shift work: chronobiological aspects. Nutrition research reviews23(01), 155-168.
[4] Li, Y., Sato, Y., & Yamaguchi, N. (2011). Shift work and the risk of metabolic syndrome: a nested case-control study. International journal of occupational and environmental health17(2), 154-160.
[5] Trockel, M. T., Barnes, M. D., & Egget, D. L. (2000). Health-related variables and academic performance among first-year college students: implications for sleep and other behaviors. Journal of American college health49(3), 125-131.
[6] Wolfson, A. R., & Carskadon, M. A. (1998). Sleep schedules and daytime functioning in adolescents. Child development69(4), 875-887.

Carb cycling: the secret to get shredded?

By Fleur van Griensven

Carbs_1

You might have heard the saying: ‘Carbs are bad for you’ or ‘eating after 8 pm makes you fat’. A lot of people claim that this will result in fat gain. Are carbs really the enemy or are these two examples just one of the thousand misconceptions in the fitness industry? Can we actually benefit from cycling our carb intake whilst cutting? Is carb cycling the secret to get shredded?

What is Carb cycling?
Carb cycling is just what the name implies: Cycling the carbohydrate intake during the week, which translates into higher carb days and days with fewer/no carbohydrates. This is also called a non-linear dieting approach. A linear dieting approach means that the amount of calories and ratio of carbs/protein/fats remains the same every day. Thus, the non-linear dieting approach includes differences in the amount of calories, carbs, protein and fats between different days. I will try to make this clearer with an example.

If you would eat 200 g carbs, 150 g protein and 60 g fat 7 days a week you’d be following a linear dieting approach

If you would eat 250 g carbs, 150 g protein and 60 g fat on your 5 training days and 150 g carbs, 150 g protein and 60 g fat on your 2 rest days, you would be following a non-linear/carb-cycling diet.

With a carb-cycling diet, you basically manipulate your carbohydrate intake on different days of the week. Figuring out how much carbs to eat on these days is not that simple, but we will get back to that later on. In addition, I will give some tips on how to incorporate carb cycling in a diet yourself.

When can it be used and what are the benefits?
Carb cycling can be used both during a cutting (caloric deficit) and bulking period (caloric surplus). In this article, we will not cover carb cycling during a bulk. Carb cycling can be used from the start of a cut or when you go deeper into a caloric deficit. Most people will choose the second option. They do this because as calories are decreased a lot, it’s harder to stay motivated. Having different amounts of calories on different days might give you something to look forward to.

Carb cycling may have some potential benefits. Firstly, for some it gives a psychological boost and motivation to keep going. Implementing higher carb days gives you something to look forward to when dieting gets tough. The prospect of a day filled with pasta, bread or whatever carb source you’re craving can just be enough to keep on track with dieting.

Menno Henselmans, the founder of Bayesian Bodybuilding, has been talking about carb cycling in one of his interviews. Bayesian Bodybuilding uses an evidence and scientific-based approach to bodybuilding, so everything is based on scientific data. In this interview, Menno Henselmans says that there are almost no studies done on the carb cycling approach and the physiological benefits. The science about carb cycling is lacking, which I also encountered when digging deeper into this topic. Menno Henselmans believes that the few days during which the carb intake is increased, or higher carb days in general, do not have any practical physiological effect. A few days of increased carb consumption after several days lower in carbs is not enough to bring hormones related to hunger and appetite back to normal. [1]

There are however some studies that looked at the effect of an increased carbs intake for one or more days on a hormone that are related to hunger and appetite.

One of these hormones is leptin. Leptin is a hormone secreted (produced) by fat cells and controls both long-term energy balance and appetite. When body fat is going down during a cut, leptin production is decreased over time. This results in more and more hunger when you are deeper into a cut. Here the fun part of shoving your face with carbs comes in. Higher carb days, also called refeed days, are thought to bring the lowered leptin concentration back to a normal level. This will reduce the increased sensation of hunger (for a while), which might help you to stick to your diet.

However, recent studies did not show that a refeed or just one-high carb day can bring leptin levels back up. Yes, refeeding does give a rise in serum leptin levels, but leptin levels return to baseline (the starting point) after 24h. This means that leptin levels are not restored long-term. Switching between higher and lower carbs days is not going to do much for an improvement in leptin and thus those hunger feelings will still be there. [2]

Carbs are the main energy source during physical activity, because they provide the glucose that is required for energy. What most people experience is that eating more carbs will result in more energy during their training session. This results in them being able to train harder and lift more. That’s why it is recommended to have higher carbs on the heaviest training days.

How to set up your carb cycling plan? [3]
The most crucial thing in setting up macros for a carb cycling diet is to still have the same weekly total carb intake as you would have in a linear dieting approach. We leave aside protein and fat for the moment as they remain the same and we are only going to manipulate our carb intake on different days. Let’s go back to the example used earlier to show how you can set it up yourself.

On a linear diet, we would have 200 g carbs x 7 days = 1400 g of carbs per week.

For example, on a carb cycling diet it could look like this:

  • 190 g 6 days per week and 260 g 1 day per week.
  • 184 g 5 days per week and 240 g 2 days per week.
  • 185 g 4 days per week and 220 g 3 days per week.

How you choose to set up your carb cycling plan is all personal preference. A few factors you can take into account are:

  • How often do you train? If you only train two or three days a week, bigger carb load days might be more beneficial for you. If you instead train five or even six days a week, a more moderate spreading of carbs might be better.

  • What are your heaviest training days? If adding more calories on these days gives performance a huge boost, go ahead and train the house down.

  • What suits my lifestyle? Can you be a bit strict during the week and have more carbs to spend for burgers with friends during the weekend? Or would you rather have a more moderate carb intake?

Conclusion, Carb cycling: The secret to get shredded?
NO carb cycling is not the secret to get shredded. The secret to get lean is maintaining a caloric deficit for as long as needed to achieve the physique or shape you’re after. If cycling your carb intake (in whatever way you choose to do so) makes it easier to stick to your diet, carb cycling might be a good strategy. Alternatively, if you enjoy doing it and get results from it, then do it. However, keep in mind that it won’t give you better results than a linear-dieting approach with a daily constant caloric deficit. Whether you use a linear or non-linear dieting approach like for example carb cycling does not matter as long as your weekly caloric averages come out the same.

Take home message: Don’t overcomplicate the whole fat loss thing, it’s not rocket science. Stick to a caloric deficit, choose a strategy you can do consistent and rock the beach this summer!

References:
[1] Henselmans, M. (Bayesian Bodybuilding). (2015, 24 February). Refeeds, Body Recomposition &
Non-Linear Diets. [Radio Podcast]. In Danny Lennon. Sigma Nutrition& Performance.

[2] Kolaczynski J, (1996). Responses of leptin to short-term fasting and refeeding in humans: a link with ketogenesis but not ketones themselves. Diabetes. 45(11):1511-5.

[3] Cheadle, N (2015, 13 November). Carb cycling for fat loss. Retrieved from  https://www.nickcheadlefitness.com/carb-cycling-for-fat-loss/ on April 26th 2017

Beta-alanine for strength training: yay or nay?

By Wietse In het Panhuis

If you have been training for some time, you have probably heard about it before. If you ever used pre-workout, you probably felt its effects before. I am talking about beta-alanine. Beta-alanine has been shown to be effective for some sports. The question is: Can beta-alanine supplementation be beneficial for strength training?Beta_alanine_1

What is beta-alanine?
Beta-alanine is a non-essential amino acid, which means that it is naturally present in the body. Even though it is already present in the body, supplementation with the intention to increase its levels could be beneficial (just like creatine). Beta-alanine is often used in sports that involve high intensity exercises, such as rowing and short-distance ice-skating. It is believed to combat muscle fatigue, and thereby has a positive effect on muscle endurance. Science has shown that beta-alanine is especially interesting for endurance during high intensity sports, and not for endurance (e.g. long distance running) and explosive (e.g. shot-put) sports[1].

How does beta-alanine improve endurance?    
Endurance is improved when fatigue is inhibited. There are many processes during exercise that could lead to fatigue. One of those processes is acidification of the muscles due to buildup of H+-ions (hydrogen ions) and lactate. Of course, the body has many mechanisms to prevent and counteract acidification, to make the pH (a measure of acidity) neutral again. Such mechanisms are called buffer mechanisms. In one of those mechanisms, a protein called carnosine plays a role[1]. During the production of ATP (energy production from food), H+-ions are formed. During exercise, a lot of energy is produced, and therefore also a lot of H+-ions. This will lead to a drop in pH (and will thus be more acidified). Carnosine works as a buffer by reacting with H+-ions. In that way, acidification and thereby fatigue of the muscles will be inhibited, which results in increased endurance.

Now beta-alanine comes in the picture. Beta-alanine supplementation results in increased carnosine levels[2]. Greater carnosine levels have been shown to increase endurance during high intensity exercise with a short duration, such as rowing and sprinting, like mentioned before. This raises the question: why not just supplement carnosine? This will not be effective, since muscle cells cannot take up carnosine from the blood stream[3]. The only way to increase carnosine inside the muscle cells, is if carnosine is produced (synthesized) in the cells themselves. Carnosine can be synthesized from beta-alanine and L-histidine (an amino acid), which in turn cannot be produced by muscle cells, but they can be taken up from the blood by muscle cells[4]. There is more L-histidine than beta-alanine in the blood, and the enzyme that combines these two to form carnosine, binds more easily to L-histidine than to beta-alanine[5-7]. For these two reasons, enough L-histidine is present while beta-alanine is often in shortage when carnosine is being produced (in other words: beta-alanine is the limiting factor). This means, that only beta-alanine is necessary to increase carnosine levels.

Thus, beta-alanine supplementation increases carnosine levels in the muscles. In turn, carnosine  works as a buffer to stabilize the pH and thereby endurance is increased. This is illustrated in Figure 1.

Beta_alanine_2

Figure 1. Beta-alanine’s mode of action. Retrieved from bodybuilding.com

How much beta-alanine do you need to use to see results?       
Increasing carnosine levels in the muscle cannot by achieved by taking beta-alanine once. According to scientific studies, supplementing 6,4 grams for 4 weeks is the most effective strategy to increase the carnosine levels in the muscle (by 65%)[8]. When supplementing for longer than 4 weeks, this will be equally effective and thus gives the same results. It just implies that supplementing beta-alanine for a short time period (less than 4 weeks) is not very effective.

The supplement is safe, but you may get a tingling, itching feeling on your skin (paresthesia) when you take more than 10 mg/kg body weight at once (around 800 mg). To prevent this, you can take eight daily dosages of 800 mg. Alternatively, four doses of 1600 mg of slow-release capsules also works to get the same effect without experiencing paresthesia[8]. Beta-alanine is commercially available in powder or slow release capsules. Powder costs about €16,- per 500 grams or ~€5,-/month. Slow-release capsules are about €15,- for 90 capsules or ~€20,-/month, making slow-release capsules four times as expensive as powder.

Fun fact: Beta-alanine is often present in pre-workout, but since intramuscular carnosine levels cannot be increased by taking beta-alanine once (like you do with pre-workout), this beta alanine has no added benefit to the pre-workout. Since beta-alanine dosages are often above 800 mg in pre-workout, this often results in paresthesia. Concluding: beta-alanine in pre-workout is useless and only gives you itches.

Can beta-alanine improve workouts for strength training?         
Unfortunately, in order to draw clear conclusions on this topic, more scientific research should be done. There are however a few studies that investigated this. One study looked at the effect of beta-alanine during a 10 week training program[9]. This study showed that total working volume increases due to beta-alanine. This effect only occurs during high-repetition sessions (8-12 repetitions) with little rest (30-90 seconds) and not in low-repetition sessions (±5 repetitions) with long rest (2-5 minutes)[9,11]. This makes sense, as during bodybuilding, muscles will get acidified which quickly can result in fatigue. Since beta-alanine improves the buffer capacity of the muscle by increasing carnosine levels, more repetitions can be done before reaching failure. In general, a greater training volume results in increased muscle mass. However, so far it has not yet been proven that the usage of beta-alanine supplements improves the gaining of muscle mass[10-12]. This might be due to the fact that in the performed studies training schedules varied and also included sets with fewer repetitions.

Thus, beta-alanine mainly seems to work for high intensity exercise during which glycolysis plays a major role (exercise durations of 1-6 minutes), since beta-alanine supplementation increases the muscle’s acid buffer capacity. Beta-alanine does not increase strength (like creatine does). Therefore, beta-alanine might be useful for bodybuilders (or for sports like bootcamp), but not for powerlifters or any sport that requires short bursts of energy (such as shot-put). More studies that test long term beta-alanine supplementation during a bodybuilding training schedule should be conducted to get clear answers on how much bodybuilders could benefit from beta-alanine.

Beta-alanine: yay or nay? Yay AND nay!      

Beta_alanine_3  

It is both yay and nay, because there is not a clear answer.

Yay:

  • Beta-alanine might improve endurance in bodybuilders, bootcampers and other high-intensity sports.

Nay:

  • Beta-alanine supplementation does not increase strength.
  • Evidence for increases in muscle mass is lacking (even though it is likely).
  • In addition, supplementation can be either expensive or really inconvenient. Since beta-alanine can have paresthesia as a side effect at high dosages, supplementing about 6.4 grams per day without experiencing paresthesia can be done in three ways[8]:
  1. The cheapest option is to supplement 8 servings of 800 milligrams distributed over the day.
  2. If you do not like regular supplementation, you might consider two daily servings of slow-release capsules (which is however four times as expensive).
  3. Finally, you might just take 5 grams of powder in one or two servings per day, with the disadvantage of itches which may last up to one hour.

In summary, beta-alanine probably has some beneficial effects for bodybuilders by increasing volume and thereby possibly muscle mass. However, more scientific studies should be done to be sure. Please take into account that effects of single supplements are generally relatively small: The greatest improvements come from a good training schedule and good nutrition. Thus, as long as you are on amateur level of training, supplements in general will not make great differences. For professional athletes it can be more useful, since small differences could make the difference between winning or losing a competition. If you are not a pro, but if you want to improve in sports as much as you can, of course that’s fine. If you think it is worthwhile to either regularly supplement, pay a lot of money or experience itches, beta-alanine might be a good contribution to your workout.

References
[1] Artioli, G. G., Gualano, B., Smith, A., Stout, J., & Lancha Jr, A. H. (2010). Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med Sci Sports Exerc, 42(6), 1162-1173.
[2] Suzuki, Y., Ito, O., Mukai, N., Takahashi, H., & Takamatsu, K. (2002). High level of skeletal muscle carnosine contributes to the latter half of exercise performance during 30-s maximal cycle ergometer sprinting. The Japanese journal of physiology, 52(2), 199-205.
[3] BAUER, K., & SCHULZ, M. (1994). Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture. European journal of biochemistry, 219(1‐2), 43-47.
[4] Matthews, M. M., & Traut, T. W. (1987). Regulation of N-carbamoyl-beta-alanine amidohydrolase, the terminal enzyme in pyrimidine catabolism, by ligand-induced change in polymerization. Journal of Biological Chemistry, 262(15), 7232-7237.
[5] Harris, R. C., Tallon, M. J., Dunnett, M., Boobis, L., Coakley, J., Kim, H. J., … & Wise, J. A. (2006). The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids, 30(3), 279-289.
[6] Horinishi, H., Grillo, M., & Margolis, F. L. (1978). Purification and characterization of carnosine synthetase from mouse olfactory bulbs. Journal of neurochemistry, 31(4), 909-919.
[7] Ng, R. H., & Marshall, F. D. (1978). REGIONAL AND SUBCELLULAR DISTRIBUTION OF HOMOCARNOSINE–CARNOSINE SYNTHETASE IN THE CENTRAL NERVOUS SYSTEM OF RATS. Journal of neurochemistry, 30(1), 187-190.
[8] Harris, R. C., Tallon, M. J., Dunnett, M., Boobis, L., Coakley, J., Kim, H. J., … & Wise, J. A. (2006). The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids, 30(3), 279-289.
[9] Hoffman, J., Ratamess, N., Kang, J., Mangine, G., Faigenbaum, A., & Stout, J. (2006). Effect of creatine and ß-alanine supplementation on performance and endocrine responses in strength/power athletes. International journal of sport nutrition and exercise metabolism, 16(4), 430-446.
[10] Hoffman J, Ratamess NA, Ross R, Kang J, Magrelli J, Neese K, Faigenbaum AD, and Wise JA. Beta-alanine and the hormonal response to exercise. Int J Sports Med 29: 952–958, 2008.
[11] Hoffman JR, Ratamess NA, Faigenbaum AD, Ross R, Kang J, Stout JR, and Wise JA. Short-duration beta-alanine supplementation increases training volume and reduces subjective feelings of fatigue in college football players. Nutr Res 28: 31–35, 2008.
[12] Kendrick, I. P., Harris, R. C., Kim, H. J., Kim, C. K., Dang, V. H., Lam, T. Q., … & Wise, J. A. (2008). The effects of 10 weeks of resistance training combined with β-alanine supplementation on whole body strength, force production, muscular endurance and body composition. Amino acids, 34(4), 547-554.